
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 2, April-May, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 309

Enhancement In Real Time Network Traffic Classifier Using

Packet Capture Library

R. Parimalam
1
, Prof. P. Krishna Kumar

2

Department of Computer Science Engineering, PET Engineering College, Vallioor, India

 Abstract— The existing PCAPLib system

extract, classify, and anonymize the packet

traces from real network traffic with two

mechanisms. Initially, active trace collection

(ATC) actively extracts and classifies packet

traces into sessions by leveraging multiple

detection devices. Second, deep packet

anonymization (DPA) protects the privacy in the

packet payloads for hundreds of application

protocols while preserving the utility of the

traces. In the existing technique, there is an issue

occurring in packet capture size, duration,

average packet size and average packet rate is

not identified. This work proposes an

enhancement of real time network traffic

classifier using packet capture library. In

addition, the deep packet tracing is used to trace

the packet with packet capture size and average

packet size with packet capture duration and

average packet rate. Enhanced packet capture

system automatically extract and classify

application sessions from bulk traffic in a

scalable manner. The packet traces can be

flexibly anonymized for protecting privacy and

used for network analysis of various purposes

not just for network security study. The

PCAPLib system has been operating for a long

time to extract the application sessions

continuously. The enhanced packet traces

provided to cooperating organizations and are

planned to be made public in the future. We are

also work toward the improvement of packet

anonymization and it will be effectively

integrated with the advance packet capture

library and ease locating sensitive application

fields to be anonymized.

 Keywords— Packet capturing library, Active trace collection,

Deep packet anonymization.

1. INTRODUCTION

The Internet traffic is changing continuously
and this contribute to difficult the characterization
of network behavior and structure. Massive games
and cloud and grid services increase every day their
percentage participation in total network traffic (1).
Due to the rapid growth of the Internet and the
multitude of new services and protocols, there have
been reported large numbers of cases of misuse and
attacks on those services and more continue being
reported each year (2, 3). During the last several
years, malicious traffic detection has been an active
area of network security because the Internet has
witnessed a surge in malicious traffic generated by
network attacks, such as denial-of-service (DoS)
and propagation of botnets, viruses, worms, trojan

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 2, April-May, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 310

horses, spyware and so on. Moreover, malicious
traffic makes network performance inefficient and
troubles users (4). For example, distributed DoS
(DDoS) attacks increase Domain Name Service
(DNS) latencies by 230 percent and web latencies
by 30 percent. During July-August 2001, 395,000
computers were infected worldwide with the
CodeRed worm, which resulted in approximately
$2.6 billion in damages (5).

There are a multitude of malicious traffic
detection techniques and thus vulnerabilities in
common security components, such as firewalls, are
unavoidable. Today, Intrusion detection systems
(IDSs) and intrusion prevention systems (IPSs) are
commonly used to detect different types of
malicious traffic, network communications and
computer system usage with the mission of
preserving systems from widespread damage; that is
because other detection and prevention techniques,
such as firewalls, access control, skepticism, and
encryption, have failed to fully protect networks and
computer systems from increasingly sophisticated
attacks and malware (4, 6, 7).

Real world Internet traffic is useful for
studies ranging from traffic characterization and
analysis, diagnosis of network events, to evaluation
of network systems such as intrusion
detection/prevention (IDP) systems. Network
research communities, as well as developers of
network appliances, usually rely on large, diverse,
updated and non synthetic packet traces for
experimental study and evaluation. For example,
network analysts who collaborate on inspecting
malicious incidents and network behavior can share
traces among one another. Capturing and sharing
real traffic face two major challenges. First, the
packet traces in a large repository involve diverse
application protocols and they should be well
classified beforehand for users to easily find the
desirable traces. Several organizations have released
packet traces for public access, e.g., (8, 9). The
traces are usually submitted and categorized
subjectively by enthusiastic contributors. They are
often outdated, inconsistently categorized and even
unusable, as the packet repository lacks a central
control mechanism to maintain the quality of packet
traces and consistently categorize them. Moreover,
if the packet traces are derived from a real

environment, e.g., from an Internet service provider,
the volume will be usually huge and it is essential to
automatically extract and consistently classify the
packet traces in a scalable way. Second, the packet
traces may contain private information such as host
addresses, e-mail addresses, and even authentication
keys. Such information should be anonymized
before the traces are shared. Although packet
anonymization helps to protect the privacy of
packet traces, it hurts their utility at the same time.
Many existing methods anonymize only the fields
in the Transmission Control Protocol/protocol suite
(TCP/IP) header and strip away the payloads.
However, the payloads are likely to contain key
information for network analysis in terms of
signature matching for intrusions, traffic
identification or payload-based anomaly detection.
Several research works have attempted to preserve
the payloads and anonymize specified key
information in them. The anonymization methods
are still limited to only a few common protocols
(e.g., HTTP and FTP) and unable to satisfy the need
for large packet traces, which may be from a large
number of application protocols. Although it is
possible to extend existing works to support the
anonymization for so many application protocols,
the support will require implementing that many
protocol parsers as well, yet the implementation
effort is nontrivial (10).

 2. BACKGROUND AND RELATED WORK

 Packet capturing anonymization
(PCAPAnon) provides hundreds of protocol parsers
based on Wire shark dissectors which can be
applied to all packet fields up to the application
level. So many application protocols have been
ready to use with the support of anonymizing and
protocol parsing allows precise specification of the
right fields for anonymization. To preserve the
statistical individuality of packets as much as
possible, PCAPAnon replaces the field values with
those of the same semantics (e.g., replacing a URL
with another URL) and length in the anonymization.
This defense will benefit the methods that rely on
statistical characteristics for traffic analysis and it

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 2, April-May, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 311

also prevents the protocol parsers from triggering an
error during the parsing process since the semantics
of application fields remain the same.

The Active Trace Collection (ATC) device
can automatically classify and extract application
sessions from bulk network traffic in a real
environment such as Beta Site and it is essential to
continue the repository of packet traces in a scalable
manner. A ready-to-use implementation of the
PCAPAnon mechanism can anonymize packet
traces for hundreds of application protocols in
existing practices though preserving both the
semantics and length of important application fields
to keep the utility for later analysis. The value of
this system for network analysis has been
demonstrated by IDP systems. It is noted that the
packet traces are not only useful for intrusion
detection but also for various kinds of network
traffic analysis. The implementation of this system
is publicly available as a Source Forge project. The
packet traces in the assessment are also available.
The disadvantages of the existing systems include
that

� The data set was criticized for being too old
to reflect contemporary network traffic.

� The packet traces in a large repository
involve diverse application protocols.

� Many existing methods anonymized only
the fields in the Transmission Control
Protocol.

� The anonymization methods are still limited
to only a few common protocols.

 3. PROPOSED SYSTEM

 The effectiveness of machine learning techniques
were evaluated for the real time traffic classification
problem using statistical attributes derived from
first packets of each flow. Port-base method was
utilized for labeling flows into categories. The
acquired results showed that the classification with
decision trees had the highest accuracy and
performance in comparison of other classifiers. In
addition, sub flow-based classifiers can reach high
accuracy values while the computational
complexity is reduced. PCAPAnon wires the
configuration to facilitate the users to specify the
fields in hundreds of application protocols to be

present anonymized with consistent alteration while
the reliability and utility of the packet traces were
preserved. It also compares PCAPLib among the
recent ISCX information sets and is available upon
requests.

It claims to be free from privacy issues because
the data set are emulated from a controlled tested
environment based on the profiles describing the do
violence to scenario and the statistical distribution
from real networks and also consider the
comparison with binary protocols. The comparison
is harder than that with the preceding for human
readable ASCII protocols because neither standard

nor anon tool has the parsers of the binary protocols
and it is difficult to specify sensitive patterns for
binary protocol in anon tool except for a few cases
such as the area names appearing in the DNS
queries. Even an IP address in a DNS response
cannot be specified because a pattern because it is
represented in a 4-byte binary value. If the payloads
are reduced by default, the utility will be seriously
affected since the DUT relies on deep packet
inspection for malicious signatures in the packet
payloads. Advantages of the proposed system
includes

� Privacy, Utility, and Efficiency

� PCAPAnon uses customized parsing to hide
more identities than anon tool.

� To avoid missing sensitive application fields
due to careless specification.

� PCAPAnon also supports pattern
substitution with regular expression

Fig. 1: Comparison with existing system

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 2, April-May, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 312

4.SYSTEM ARCHITECTURE

 The system architecture is shown in figure 2.

 Fig. 2: system Architecture

 5. SYSTEM IMPLEMENTATION

5.1 Real Packet Traces
Emulated packet traces can be generated in

the laboratory by custom scripts or traffic
generators such as Harpoon. A well-known
example of this approach is the DARPA-sponsored
evaluation data set for intrusion detection but the
data set was criticized for being too old to reflect
contemporary network traffic. A scalable method to
automatically extract and classify the packet traces
is therefore required. Moreover, the network

operators may be unwilling to allow the researchers
to acquire the traces due to privacy concerns.

5.2Active Trace Collection

In contrast, the ATC mechanism can
automatically capture, extract and classify large
scale packet traces from real traffic. A traffic replay
tool replays captured raw traffic to multiple devices
under test (DUTs) to leverage their domain
knowledge. The ATC associates the sessions
according to the log messages and classifies the
traces into different categories by matching the logs
with representative keywords.

 Fig. 3: ATC system flow

5.2 PCAPAnon
 PCAPAnon provides hundreds of protocol
parsers based on wire shark dissectors which can be
applied to all packet fields up to the application
level. Support of anonymizings, so many
application protocols has been ready to use and
protocol parsing allow precise specification of the
right field for anonymization. To preserve the
statistical characteristics of packets as much as
possible, PCAPAnon replaces the field values with
those of the same semantics (e.g., replace a URL
with another URL) and length in the anonymization.
The preservation determination benefit the methods
that rely on statistical individuality for traffic
analysis and it also prevents the protocol parsers

User File
Uploa

d

File
View

Thread
s

Packet

Splitting

Font

Size

Classif
iers

D
at
e

Statu
s/size

Opera
tions

Perfor
mance

Chat

File
Sharin

g

Receiv
er file
View

Receiv
er

Upload
File
view

Se
rv
er

Chat
Reques

t

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 2, April-May, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 313

from triggering an error during the parsing process
since the semantics of application fields remain the
same.

5.3 Trace Repository

The Wire shark code is modified to support
anonymizing the specified application fields from
the command options or custom scripts based on
subjective judgment on sensitive fields or analysis
from the heuristics for the options mean anonym
force the content in the HTTP HOST field. The
specification is particularly practical when an
application field is private (e.g., a password) yet
difficult to specify the content with a pattern. To
avoid missing sensitive application fields due to
careless specification, PCAPAnon also wires
pattern substitution with regular expression (Rage)
matching to seek and match sensitive identities such
as IP addresses, mail addresses and URLs. The
substitution is also useful if the identities are from
an unknown application protocol or not precisely
identified in protocol parsing.
5.4 Packet splitting as threads

In this module the uploaded file will be
splits as packets for the packet split and uploaded.
These split process will follows as file process. In
this process how many packets wants to split the
packets. The split packets are also known as privacy
and integrity threads. The main purpose of this
module is maintains privacy.
5.5 Performance of monitoring process

Enhancement of real time network traffic classifier
using packet capture library is proposed. In
addition, the deep packet tracing is used to trace the
packet with packet capture size and average packet
size with packet capture duration and average
packet rate.

 6. SYSTEM TESTING
Testing is an important phase encountered in

any developed product or framework. Because, the
developed product should be free from errors and it
should be validated for accuracy. The product
should work under normal conditions as long as the
user gives proper inputs and therefore it should be
checked for its robustness and should withstand and
inform the users about the erroneous input. The
testing phase involves testing the system using

various test data. Preparation of test data plays a
vital role in the system testing. After preparing the
test data, the system is tested using those test data.
Errors found are corrected and recorded for future
reference. Thus a series of testing is performed on
the system before it is ready for implementation.
Testing is applied at the different levels of
development cycle. Each level of testing is different
in nature and has different objectives at each level.
The focus of all levels of testing is to find errors, but
different types of errors are looked for at each level.
The quality of system is confirmed by the
thoroughness of its testing. Duration and cost of
testing and debugging is a significant fraction of the
system development cycle and hence influences
overall productivity during the development. In this
phase, the errors in the programs or modules are
localized and modifications are done to eliminate
them. The testing makes a logical assumption that
all parts of the system work efficiently and the goal
is achieved.

Black-box testing is an approach to testing
where the tests are derived from the program or
component specification. The system is a ‘block
box’ whose behavior can only be determined by
studying its inputs and the related outputs. It is also
known as functional testing because the tester is
only concerned with the functionality and not the
implementation of the software. The methods
commonly used here are Equivalence partitioning,
Boundary-value analysis and Error guessing.

 Fig. 4:Performance evaluation

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 2, April-May, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 314

Equivalence partitioning is a systematic process that
identifies on the basis of whatever information is
available, a set of interesting classes of input
conditions to be tested, where each class is
representative of a large set of other possible tests.
 In boundary value analysis, the elements are
selected such that each edge of the EC is the subject
of a test. Example: If an input specifies a range of
valid values, write test cases for the ends of the
range and invalid-input test cases for conditions just
beyond the ends. If the input requires a real number
in the range 0.0 and 90.0 degrees, then write test
cases for 0.0,90.0.

Error guessing is an ad hoc approach;
identify the tests that are considered likely to expose
errors. The basic idea is to make a list of possible
errors or error-prone situations and then develop
tests based on the list.

1) Low level testing involves testing
individual program components one at a time or in
combination. It requires intimate knowledge of the
program’s internal structure. The objective of this
testing and integration testing is that the code
implemented the design properly. In developing a
large system testing usually involves several stages.
These test cases are more refined and are generally
written with details such as ‘Expected Result’, ‘Test
Data’, etc.

Unit testing focuses on the verification effort
of the smallest unit of design module. Attention is
diverted to individual modules, independently to
locate errors. This has enabled the detection of
errors in coding and logic. The various modules of
the system are tested in unit testing method. Using
the detailed description as a guide, important
control parts are tested to uncover errors within the
boundary of the module. The relative complexity of
tests and the error detected as a result is limited by
the constrained scope established for unit testing.
This test focuses on each module individually,
ensuring that it functions properly as a unit, and
hence the name Unit Testing.

Module tests seek to validate the code
produced to create sets of logically connected
subroutines and data which have been grouping
together into modules. Module testing is concerned

with testing the smallest piece of software for
which a separate specification exists. After
checking for errors the modules can be integrated.

Integration testing is carried out after the
modules are integrated. This test uncovers the
errors associated with the interface. This testing is
done with sample data. The need for integration is
to find overall system performance. The objective
is to take unit tested modules to build a
programmed structure. All the modules are
combined and tested as whole. Thus in integration
testing step, all the errors uncovered are corrected
for the next testing steps.

 7. CONCLUSION AND FUTURE WORK:

Architecture, implementation, and
performance of an Internet traffic classifier monitor
were presented in this work. The monitor is
composed of three modules which were
implemented as concurrent processes: capture and
pre-processing, flow reassembly and classification.
For the traffic trace, the throughput reassembly
module of the current implementation is 24997.25
flows per second. The system has been proven
effective by running it in an operational network,
the Beta Site, and its source code is presented as a
Source Forge project at the implementation of this
system is publicly accessible as a Source Forge
project the packet traces in the evaluation also exist
in. It presents the background and connected work
describes the plan and ideas of our methodology
addresses the major system execution issues.
 Future directions for this research includes
incorporating sub flow based classification in ITCM
to reduce response time. Second, we aim to verify
the performance impact of our classifier monitor at
gigabit links, which are becoming increasingly
common at computer networks. Finally, we could
also prototype ITCM with NetFPGA hardware,
since the implementation of network systems in
hardware is essential for any real time application,
particularly in gigabit networks.

 REFERENCES

1. Silas Santiago Lopes Pereira, Jose Everardo
Bessa Maia, Jorge Luiz de Castro e Silva.
ITCM: A real time internet traffic classifier

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 2, April-May, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 315

monitor. International Journal of Computer
Science & Information Technology 2014; 6
(6): 23 – 38. DOI:10.5121/ijcsit.2014.6602

2. Sans top 20 security risks for 2007.
 http://www.sans.org/top20/

3. Michael Foukarakis, Demetres Antoniades,

Michalis Polychronakis. Deep Packet
Anonymization. EUROSEC 2009.
Proceedings of the Second European
Workshop on System Security. 16 - 21.
Doi: 10.1145/1519144.1519147

4. Cheng-Yuan Ho, Ying-Dar Lin, Yuan-
Cheng Lai, I-Wei Chen, Fu-Yu Wang, Wei-
Hsuan Tai. False Positives and Negatives
from Real Traffic with Intrusion
Detection/Prevention Systems. International
Journal of Future Computer and
Communication 2012; 1(2): 87 – 90.

5. Cheng-Yuan Ho, Yuan-Cheng Lai, I-Wei
Chen, Fu-Yu Wang, Wei-Hsuan Tai.
Statistical Analysis of False Positives and
False Negatives from Real Traffic with
Intrusion Detection/Prevention Systems.
IEEE Communication Magazine 2012; 50
(3): 146 – 154. Doi:
10.1109/MCOM.2012.6163595

6. S. X. Wu, W. Banzhaf. The Use of
Computational Intelligence in
IntrusionDetection Systems: A Review.
Elsevier Applied Soft Computing 2010; 10:
1 – 35.

7. H. T. Elshoush, I. M. Osman. Reducing

False Positives through Fuzzy Alert
Correlation in Collaborative Intelligent
Intrusion Detection Systems — A Review.
Proc. of IEEE International Conference on
Fuzzy Systems (FUZZ), July 2000; 1 – 8.

8. PCAPR collaborative network forensics.
[Online]. Available:
http://www.pcapr.net/forensics

9. Packetlife repository. [Online]. Available:
http://www.packetlife.net/ captures

10. Ying-Dar Lin, Po-Ching Lin, Sheng-Hao
Wang, I-Wei Chen, Yuan-Cheng Lai.
PCAPLib: A System of Extracting,
Classifying and Anonymizing Real Packet
Traces. Systems Journal, IEEE 2014; PP
(99): 1 – 12. Doi:
10.1109/JSYST.2014.2301464

